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This paper presents a novel approach for short-term wind speed prediction based on a Coral Reefs Opti-
mization algorithm (CRO) and an Extreme Learning Machine (ELM), using meteorological predictive vari-
ables from a physical model (the Weather Research and Forecast model, WRF). The approach is based on a
Feature Selection Problem (FSP) carried out with the CRO, that must obtain a reduced number of predic-
tive variables out of the total available from the WRF. This set of features will be the input of an ELM, that
finally provides the wind speed prediction. The CRO is a novel bio-inspired approach, based on the sim-
ulation of reef formation and coral reproduction, able to obtain excellent results in optimization prob-
lems. On the other hand, the ELM is a new paradigm in neural networks’ training, that provides a
robust and extremely fast training of the network. Together, these algorithms are able to successfully
solve this problem of feature selection in short-term wind speed prediction. Experiments in a real wind
farm in the USA show the excellent performance of the CRO–ELM approach in this FSP wind speed pre-
diction problem.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Wind power is currently the most important renewable energy
source in the world in terms of annual growing and economic
impact [1,2]. The installed wind power worldwide by the end of
2013 reached a total of 318 GW, with a few leading countries bet-
ting for this technology: China (91 GW), the USA (61 GW), Ger-
many (34 GW), Spain (23 GW) or India (20 GW) [3], and many
others in which wind energy is considered as the future source
of alternative energy out of conventional sources, such as Denmark
(25% of wind energy penetration), Portugal (16%), Ireland (12%),
Italy (4%) or France (3%). This wind energy booming around the
world has brought new problems in the management and mainte-
nance of wind farm facilities [4]. One of this important problems is
the integration of wind energy in the energy transportation net-
work, where the prediction of the generated power in wind farms
is a key problem, influenced by the variability of the wind in the
short and medium terms. Thus, wind speed prediction is a basic
task performed in all wind farms facilities as part of their operation
management.

There are two types of approaches that have been used to carry
out wind speed prediction in wind farm facilities. First, pure statis-
tical approaches consider only previous wind speed series in one or
several towers to construct a predictor for the wind speed in the
near future. These approaches sometimes include meteorological
variables measured at the prediction area, in order to enhance
the wind speed prediction. In any case, these approaches do not
take into account the atmospheric dynamics in order to make the
wind speed prediction. In the last few years, many different statis-
tical approaches have been applied to wind speed prediction,
including linear prediction models [5], classical Box–Jenkins meth-
odologies such as auto-regressive models [6] and other time series
analysis such as the Mycielski algorithm [7], different clustering
algorithms [8,9], and several modern computational approaches
such as neural networks [10–13], neural networks ensembles
[14], Bayesian methods [15], support vector machines [16,17], or
combinations of different statistical models: neural networks and
auto-regressive models [18], auto-regressive models and Kalman
filtering [19], neural networks and Markov models [20], and wave-
lets and neural approaches [21,22].
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One alternative to this pure statistical approach is to consider
pure physical models, usually meso-scale models, to make the
wind speed prediction [23,24]. The main issue with this approach
is the reduced spacial accuracy of the meso-scale models, condi-
tioned by the spacial domains defined in the models. Also, the
necessity of including different parameterizations in the models
makes difficult the application of these methods in a wind farm
in operation.

There is a third alternative, consisting in the combination of
physical and statistical models [25,26]. The physical models can
be global, meso-scale or even local, taking into account the specific
local orography of the wind farm [27,28]. On the other hand, statis-
tical models are usually included in these prediction systems to
process the output of the physical models, and it has been shown
that they produce a significant improvement in the prediction
when compared with purely physical (and of course purely statis-
tical) approaches [29–31]. One characteristic of these hybrid phys-
ical–statistical models is that the physical models produce a large
number of different meteorological variables, which can be used as
inputs for the statistical methods. In fact, even if we consider a
reduced-size grid for the physical models, the number of available
meteorological variables (from a given physical model), is huge,
and some variable selection is needed. In most cases, the variable
selection is carried out by randomly choosing a few meteorological
variables with some experimental criteria [26,29], but it can be
seen that a correct study on the input variables of statistical meth-
ods would improve the quality of the results obtained. This process
of feature reduction is known in artificial intelligence as a Feature
Selection Problem (FSP). Recently, different works specific on FSP
in wind speed prediction have been discussed in the literature. In
[32,33] Particle Swarm Optimization (PSO) and differential evolu-
tion algorithms, together with a k-nearest neighbors approach,
are proposed to select the best variables in a wind speed prediction
problem. A classical neural network (multi-layer perceptron) is
used as statistical approach to improve the outcome of a physical
model. The authors show how the PSO approach obtains the best
results in terms of prediction error in several wind farms in Ger-
many. More recently, in [34] a genetic algorithm is applied to the
selection of the best set of features to feed a neural network in a
wind speed prediction problem. The authors show the goodness
of their proposal in data from several wind farms in India, obtain-
ing improvements over the prediction system without feature
selection. Recently, in [35] a PSO is proposed to optimize the main
parameters of a neural network, including the training set length,
in a problem of short term wind speed prediction. Experiments
in a zone of high wind speed resource in the north west of China
showed the accuracy of this proposal.

Even though these hybrid physical–statistical approaches have
shown good results in wind speed prediction problems, there are
several methodological problems on them that must be solved.
First, different optimization algorithms can obtain better results
than those tested up until now. Second, there is a serious problem
of computational cost associated to this problem, that must be
treated in order to improve the results. This paper is focussed solv-
ing the two main drawbacks of feature selection in wind speed pre-
diction mentioned before. We therefore deal with a problem of
feature selection in a hybrid wind speed prediction system based
on a physical model with an statistical final approach (a fast-train-
ing neural network). The novelties and contributions of this paper
are the following: First, we propose a new hybrid physical–statis-
tical algorithm for a problem of short term wind speed prediction.
The physical model is the WRF [23], whereas the statistical
approach is a novel Coral Reef Optimization (CRO) [36] with an
Extreme Learning Machine (ELM) [37]. The CRO approach is
recently proposed meta-heuristic, that has shown very good
performance in other optimization problems. In this case we use
the CRO approach to select the best set of meteorological variables
from the WRF, in terms of the prediction error obtained with the
ELM network. We have chosen ELM as final regressor because it
is able to provide excellent results within a very short computation
time. Second, note that we state the wind speed prediction prob-
lem in a wind farm as a FSP. Thus, we consider a novel formulation
of the problem, where the performance of the statistical approach
(ELM) depends on the set of variables selected out of the physical
model (WRF in this case). This requires a novel encoding of the FSP
in the CRO, that is also a contribution of this work. Finally, we show
the performance of the proposal in a real problem of wind speed
prediction in a wind farm located at the west coast of the USA,
showing the good performance of the proposed approach by means
of comparison with an alternative prediction system based on a
classical evolutionary algorithm.

The rest of this article is structured as follows: next section
briefly introduces the feature selection problem in a formal way,
describing the different existing methodologies to solve this prob-
lem. Section 3 presents the CRO algorithm used in this paper to
tackle the feature selection problem in wind speed prediction. In
this section we also describe the ELM network used in this work.
Section 5 presents the experimental part of the paper, where the
performance of the proposed approach is evaluated. Finally,
Section 6 closes the paper with some concluding remarks.
2. The feature selection problem

Feature selection is an important task in supervised classifica-
tion and regression problems because irrelevant features, used as
part of the training procedure, can increase the cost and running
time of a prediction system, and make its generalization perfor-
mance poorer [38].

In its more general form, the FSP for a learning problem from
samples can be addressed in the following way: given a set of
labeled data points ðx1; y1Þ; . . . ; ðxl; ylÞ, where xi 2 Rn and yi 2 R,
choose a subset of m features (m < n), that achieves the lowest
error in the prediction of yi.

There are two different approaches to the Feature Selection
Problem (FSP). The first method tries to identify an appropriate
set of features, independently of its classification performance,
which preserve most of the information provided by the original
data. This approach is known as filter method for feature selection
[38]. Fig. 1(a) shows an outline of the filter method for feature selec-
tion. The second approach directly selects a subset of m features out
of the total available in such a way that the performance of the clas-
sifier is improved or, at least, is not degraded. This method, known
as wrapper method, is more powerful than filter methods, but it is
also computationally more demanding [39,40]. Fig. 1(b) shows an
outline of the wrapper method for feature selection. The search of
the best feature subset can be performed by means of any search
algorithm like hill-climbing, greedy or genetic algorithms.

All the previously discussed approaches to feature selection in
wind speed prediction problems [32–34] deal with some kind of
wrapper methods, where the regressor is a neural network and
the search algorithm depends on the approach (particle swarm,
differential evolution or genetic algorithms). In this paper we also
study a wrapper approach for feature selection, formed by a CRO as
searching strategy and an ELM to predict the wind speed. Next sec-
tions describe the different algorithms of the system.
3. The coral reefs optimization algorithm

The CRO is a novel meta-heuristic search approach based on
corals’ reproduction and coral reefs formation, proposed in [36].
Basically, the CRO is based on the artificial modeling of a coral reef,



Fig. 1. Strategies in FSP; (a) filter methods and (b) wrapper methods.

Fig. 2. Flow diagram of the proposed CRO algorithm.
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K, consisting of a N �M square grid. We assume that each square
ði; jÞ of K is able to allocate a coral (or colony of corals) Ni;j, repre-
senting a solution to a given optimization problem, which is
encoded as a string of numbers in a given alphabet I . The CRO
algorithm is first initialized at random by assigning some squares
in K to be occupied by corals (i.e. solutions to the problem) and
some other squares in the grid to be empty, i.e. holes in the reef
where new corals can freely settle and grow in the future. The rate
between free/occupied squares in K at the beginning of the algo-
rithm is an important parameter of the CRO algorithm, which is
denoted as q, and note that 0 < q < 1. Each coral is labeled with
an associated health function f ðNijÞ : I ! R, that represents the
problem’s objective function. The CRO is based on the fact that reef
will progress, as long as healthier (stronger) corals (which repre-
sent better solutions to the problem at hand) survive, while less
healthy corals perish.

After the reef initialization described above, a second phase of
reef formation is artificially simulated in the CRO algorithm: a sim-
ulation of the corals’ reproduction in the reef is done by sequen-
tially applying different operators. This sequential set of
operators is then applied until a given stop criteria is met. Several
operators to imitate corals’ reproduction are defined, among them:
a modeling of corals’ sexual reproduction (broadcast spawning and
brooding), a model of asexual reproduction (budding), and also
some catastrophic events in the reef, i.e. polyps depredation. After
the sexual and asexual reproduction, the set of larvae formed (new
solutions to the problem), try to locate a place to grow in the reef. It
could be in a free space, or in an occupied once, by fighting against
the coral actually located in that place. If larvae are not successful
in locating a place to grow in a given number of attempts, they are
depredated in this phase. Fig. 2 illustrates the flow diagram of the
CRO algorithm referencing the two CRO phases (reef initialization
and reef formation), along with all the operators described above.
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1. Broadcast Spawning (external sexual reproduction): the modeling
of coral reproduction by broadcast spawning consists of the fol-
lowing steps:

1.a. In a given step k of the reef formation phase a fraction of the
existing corals is selected uniformly at random to be broad-
cast spawners. This fraction will be denoted as Fb. Corals
that are not selected to be broadcast spawners (i.e. 1� Fb)
will reproduce by brooding later on in the algorithm.

1.b. Couples are selected from a pool of broadcast spawner cor-
als in step k. Each of such couples will form a coral larva by
sexual crossover, which is then released out to the water.
Note that, once two corals have been selected to be the par-
ents of a larva, they are not chosen anymore in step k (i.e.
two corals are parents only once in a given step). These cou-
ple selection can be done uniformly at random or by resort-
ing to any fitness proportionate selection approach (e.g.
roulette wheel).

2. Brooding (internal sexual reproduction): as previously men-
tioned, at each step k of the reef formation phase in the CRO
algorithm, the fraction of corals that will reproduce by brooding
is 1� Fb. The brooding modeling consists of the formation of a
coral larva by means of a random mutation of the brooding-
reproductive coral (self-fertilization considering hermaphrodite
corals). The produced larva is then released out to the water in a
similar fashion than that of the larvae generated in step 1.b.

3. Larvae setting: once all the larvae are formed at step k either
through broadcast spawning (1) or by brooding (2), they will
try to set and grow in the reef. First, the health function of each
coral larva is computed. Second, each larva will randomly try to
set in a square ði; jÞ of the reef. If the square is empty (free space
in the reef), the coral grows therein no matter the value of its
health function. By contrast, if a coral is already occupying the
square at hand, the new larva will set only if its health function
is better than that of the existing coral. We define a number j of
attempts for a larva to set in the reef: after j unsuccessful tries,
it will be depredated by animals in the reef.

4. Asexual reproduction: in the modeling of asexual reproduction
(budding or fragmentation), the overall set of existing corals
in the reef are sorted as a function of their level of healthiness
(given by f ðNijÞ), from which a fraction Fa duplicates itself and
tries to settle in a different part of the reef by following the set-
ting process described in Step 3. Note that a maximum number
of identical corals (l) are allowed in the reef.

5. Depredation in polyp phase: corals may die during the reef for-
mation phase of the CRO algorithm. At the end of each repro-
duction step k, a small number of corals in the reef can be
depredated, thus liberating space in the reef for next coral gen-
eration. The depredation operator is applied with a very small
probability Pd at each step k, and exclusively to a fraction Fd

of the worse health corals in K.

4. Feature selection with the CRO algorithm

The FSP tackled in this paper has the following description. First,
we consider a grid X formed by N � N nodes and a given measuring
tower M. We consider a time series of wind speed values in M, and a
times series of M meteorological variables (features) in each node of
the grid, obtained from a given physics-based prediction model. The
wind speed series in M, and the meteorological series in the points
of the grid are synchronized in time. Note that for large values of M,
the number of available meteorological variables is huge (may be
over 5000). The problem consists of predicting the wind speed in
M by using the predictive meteorological variables of the grid
points. Fig. 3 shows an example of a grid X and measuring tower
M. We consider then a fix number m of final meteorological
variables (out of the total n ¼ M � ðN � NÞ) to do the wind speed
prediction. In this case we have carried out experiments with differ-
ent number of fixed variables m, so the objective of the problem is
to obtain the best set of m variables that provides the best perfor-
mance of the system in terms of wind speed prediction.

With this in mind, the encoding of each coral N (problem’s solu-
tion) in the CRO is the following: each meteorological variable
included in the prediction system needs a total of four parameters
to be identified, ðx; y; id;maÞ, where x stands for the x-coordinate in
the grid, y stands for the y-coordinate in the grid, id stands for the
variable identifier and ma is a binary variable in such a way that a
1 means that we consider a moving average of the series of that var-
iable, and a 0 means that such a moving average is not considered.
The final encoding of a coral in the algorithm is therefore a
(m� 4)-length vector:

N ¼ ½x1; y1; id1;ma1; . . . ; xm; ym; idm;mam�: ð1Þ
4.1. Objective function: extreme learning machines

The ELM is a novel and fast learning method based on the struc-
ture of multi-layer perceptrons, recently proposed in [37] and
applied thereafter to a large number of classification and regression
problems [41–43]. The ELM’s structure is similar to the network
given in Fig. 4. The most significant characteristic of the ELM train-
ing is that it is carried out just by randomly setting the network
weights, and then obtaining the inverse of the hidden-layer output
matrix. The advantages of this technique are its simplicity, which
makes the training algorithm extremely fast, and also its outstand-
ing performance when compared to avantgarde learning methods,
usually better than other established approaches such as classical
multi-layer perceptrons or support vector machines. Moreover,
the universal approximation capability of the ELM network, as well
as its classification capability, have been already proven [44,45].

The ELM training method can be defined in the following way:
Given a training set @ , fðxi; tiÞj xi 2 Rn; ti 2 R; i ¼ 1; . . . ;NTg, an
activation function gðxÞ and a number of hidden nodes (eN), the
ELM algorithm is summarized in a number of steps:

1. Randomly assign inputs weights wi and bias bi, with
i ¼ 1; . . . ; eN .

2. Calculate the NT � eN hidden-layer output matrix H, defined as
H ,

gðw1x1 þ b1Þ � � � gðweN x1 þ beN Þ
..
. . .

. ..
.

gðw1xNT þ b1Þ � � � gðweN xNT þ beN Þ

2
6664

3
7775: ð2Þ
3. Calculate the output weight vector b as
b ¼ HyT; ð3Þ
where Hy stands for the Moore–Pennrose inverse of matrix H
[37], and T , ½t1; . . . ; tNT �

T is the training output vector.

Note that the number of hidden nodes eN is a free parameter of
the ELM training, and must be estimated to obtain good results.
Usually, scanning a range of eN values is the most practical solution
for this problem. It is well known that the ELM is an algorithm with
a low computational complexity because it just involves the calcu-
lation of the output weights by means of the Moore–Pennrose
matrix and other minor calculations. Because of their excellent
performance along with their extreme fast training time, ELMs
are perfect for hybrid algorithms requiring fast classifiers or regres-
sors, such as in the case of feature selection. In this case, the ELM
algorithm is used to calculate the Mean Square Error (MSE) of
the wind speed prediction. MSE value will be used as coral health
(objective) function in the CRO algorithm.



Fig. 3. Example of the grid and measuring tower in a wind farm.
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5. Experimental part

In order to test the performance of the proposed CRO–ELM algo-
rithm for short-term wind speed prediction, we have carried out a
number of experiments with real wind speed data from a measur-
ing tower (M) in a wind farm in USA (see Fig. 5). In the following
sections we describe in detail the data used to evaluate the CRO–
ELM performance, the predictive variables considered in this case,
as well as a brief description of alternative algorithms we have
used to contextualize the CRO–ELM analysis.
5.1. Data used, variables considered and methodology

One year of hourly 10 m wind speed data (01/03/2007–29/02/
2008) is considered. An 11� 11 grid surrounding the measuring
tower is taken into account, and in each node of the grid, a series
of 27 meteorological variables (at different height levels) is consid-
ered. Table 1 shows the predictive meteorological variables consid-
ered. Variables in the time considered for analysis (01/03/2007–29/
02/2008) have been obtained with a meso-scale WRF model in
backcast or hindcast mode, using the National Center for Environ-
mental Prediction and National Center of Atmospheric Research
(NCEP/NCAR) global Reanalysis dataset. Note that there are 27 pre-
dictive variables, some of them are direct outputs of the meso-scale
model and some others correspond to derived variables. As men-
tioned, we also consider the possibility of a moving average on
the variable series, so we finally have M ¼ 54 possible variables to
be selected in each grid point. Thus, the total number of variables
involved in the problem is n ¼ M � ðN � NÞÞ ¼ 54 � 121 ¼ 6534
variables. We have first split the available data into a training
(75% of the data) and a test set (25%). After this first splitting of
the data, the following methodology has been carried out in order
to obtain a significant solution out of the CRO–ELM algorithm: as
has been mentioned before, MSE value will be used as coral health
(objective) function in the CRO algorithm. However, this MSE must
be calculated in the CRO considering only the training data. In order
to obtain an objective measure of MSE which provides then the best
generalization of the algorithm, we have included a procedure of n
cross-validation, in which the training data is split again into n sets,
and the ELM is trained with n� 1 of these sets and tested in the
remaining one, in such a way that all the sets are used as test set.
The MSE provided as health function of the coral will be the average
of all the MSE obtained for each of the sets serving as test set. In a
final step, after the best coral has been obtained in the CRO, we
can obtain its final associated MSE in the test set (25% of the original
data, training the ELM with the 75% of these original data), as the
final result of the CRO–ELM. Note that all the results shown in this
paper are referred to this final MSE in the test set. Finally, just to
highlight once more that the problem we face is therefore to obtain
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Fig. 5. Situation of the wind farm considered in this work.

Table 1
Predictive meteorological variables used in the short-term wind speed prediction
problem considered.

id # Meteorological variable

Direct measures
0–5 Wind speed and direction at different heights (0 m,

10 m, 20 m, 50 m, 80 m, 100 m)
6–10 Wind direction at different heights (0 m, 10 m, 20 m,

50 m, 80 m)
11–13 Temperature at different heights (0 m, 2 m, 20 m)
14 Specific humidity (2 m)
15 Sea level pressure
16 Long wave down radiation (0 m)
17 Short wave down radiation (0 m)
18 Precipitation
19–26 Function combinations of variables 0–18
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the best set of m variables out of the 6534 possible that optimize the
wind speed prediction done by the ELM algorithm. Note also that
the value of m should be small in order to favor the ELM training.

5.2. Algorithms for comparison

We can establish two levels of comparison with the proposed
CRO–ELM. First, we can evaluate the goodness of the CRO as global
searcher. In order to do it, we have used an Evolutionary Algorithm
(EA) [46] to solve the same FSP associated with short-term wind
speed prediction. In this case, the structure of the algorithm for
comparison is exactly the same that the proposed approach,
substituting the CRO by an EA. A standard EA with two-points
crossover and Gaussian mutation has been used in this compari-
son. The second level of comparison is the evaluation of the ELM
as a regressor. In this case, note that the computation time of
any candidate to substitute the ELM in the proposed approach
must be extremely fast. Otherwise, the computation time of the
algorithm could be completely unacceptable. Considering this
important constraint, we have tested a linear regressor to substi-
tute the ELM in this second comparison carried out, to form a
CRO–LR algorithm. The linear regression is a well-known regres-
sion approach, which uses a linear model to estimate the depen-
dent variable, in the following way:

y ¼ X � bþ �; ð4Þ

where X stands for the matrix of predictive variables, b is a vector of
weights and beta the bias vector to complete the linear regression.
Using this alternative, we can evaluate the goodness of the ELM as
regressor in this problem of wind speed prediction.
5.3. Results

Table 2 shows the results obtained (in terms of MSE) by the
CRO–ELM and EA–ELM approaches. The CRO–ELM algorithm
obtains better results than the EA–ELM in all the experiments car-
ried out, with a small error in wind speed prediction. The average
improvement obtained with the CRO–ELM over the EA–ELM algo-
rithm in terms of mean square error is about 2%. This may seem a
small improvement, but it means an important improvement in
terms of energy production and obtained revenue for an average
wind farm, as we will show in the final discussion of this section.
Note that the proposed wind speed prediction system is able to
obtain accurate wind speed prediction, with a mean square error
in the test set around 2.5 m/s. It is interesting that the best result
obtained with the CRO–ELM contains m ¼ 9 variables. This means
that we have reduced the total 6534 initial possible variables to
just 9, keeping the accuracy in the prediction. This implies an
improvement in the wind speed prediction system in terms of
computational complexity, since once the system is trained, we
will have to consider 9 variables to obtain a good wind speed pre-
diction. Fig. 6 illustrates the variables chosen by the CRO–ELM
approach, and their location in the grid. As can be inferred from
this plot, characteristics from the leftmost part of the grid seems
to be dominant in the feature selection process carried out by
the CRO algorithm. Interesting is also to remark that moving-aver-
age based variables (tagged with identifiers from 27 to 54) occur to
be more frequent in the best solutions provided by the CRO than
direct meteorological variables (tagged from 0 to 26).

In the second comparison carried out to evaluate the perfor-
mance of the proposed algorithm, we analyze a comparison
between the CRO–ELM and CRO–LR approaches. In this case we
focus on the case of 9 final variables which is the one which
obtained a better wind speed prediction. The result obtained by
the CRO–LR is in this case 2.989 m/s in MSE. This results is poorer
than the one obtained with the ELM, which seems to be more accu-
rate with a similar computational cost. Fig. 7 shows the best CRO
evolution obtained, considering cross-validation MSE with the
ELM and LR regressors. We can also have a visual shot of the
CRO–ELM performance in this problem by comparing the best
wind speed prediction obtained against the real wind speed.
Fig. 8 shows such a comparison. Note that the proposed CRO–



Table 2
Results obtained with the CRO–ELM and EA–ELM in the FSP problem associated with
short-term wind speed prediction.

# Predictive variables MSE CRO–ELM (m/s) MSE EA–ELM (m/s)

4 2.573 2.612
5 2.565 2.594
6 2.552 2.589
7 2.530 2.582
8 2.543 2.567
9 2.503 2.556

10 2.505 2.567
11 2.509 2.577
12 2.517 2.579
13 2.515 2.587
14 2.511 2.589
15 2.534 2.600
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ELM obtains an accurate reconstruction of the wind speed, missing
some ramps and maximum/minimum wind speed values, but fol-
lowing quite well the wind speed trend in general.
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Fig. 7. CRO–ELM and CRO–LR evolution; (a) CRO–ELM and (b) CRO–LR.
5.4. Further analysis and discussion

In the previous section we have analyzed the performance of
the ELM and LR evolution (using a CRO and EA algorithms), in order
to fix a small number of predictive variables in a problem of wind
speed forecast. As has been mentioned, the election of the ELM or
LR algorithms is useful because the wrapper feature selection
requires low computational approaches to be hybridized with the
global search algorithms. There are, however, powerful algorithms
for regression that could produce excellent results in wind speed
prediction. One of this approaches is the Support Vector Regression
(SVMr) algorithm [47], that is known to be one of the most accu-
rate existing regressor algorithms, and it has been successfully
applied to wind speed prediction previously [31,30]. On the other
hand, this algorithm involves a high computation time, even
harder if SVMr parameters are sought previously to its application
to the problem (in this case we obtain the SVMr parameters by
using a grid search approach). Thus, it is not directly applicable
in hybridization with the CRO, but, we could, of course, test its per-
formance by applying it to the features selected by the CRO–ELM or
CRO–LR algorithms. The idea is to select the best reduced set of
predictive feature with the CRO–ELM or CRO–LR, and then, using
the SMVr to test this reduced set of features (training with the
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Fig. 6. Variables selected by the CRO–ELM algorithm in this problem of short-time
wind speed prediction.
complete 75% of samples and testing the results in the remainder
25%). We have carried out this experiment, in the case of a set of
9 features. A process of SVMr parameters tuning following a grid
search with bounds [49] has been carried out in a reduced set
before launching the algorithm in the test set. Table 3 shows these
results. Note that the SVMr approach applied to the features
selected either by the CRO–ELM or CRO–LR provides better results
than the ELM, in spite of the FSP has been driven with the latter.

In order to analyze the impact that the improvement in wind
speed prediction has in terms of economical revenues, we have
carried out the following procedure: first, we have obtained the
energy production series from the wind speed series, by using
the model in [48]. This model considers the behavior of complete
wind farms and not only isolated wind turbines. We have assumed
an average wind farm with 50 MW, with standard losses and wind
turbines availabilities. Due to the non-linearity of energy produc-
tion with the wind, in this case, the MSE in energy is similar to
the one obtained for the wind (about 2%). Considering the Spanish
case, in which penalties for errors in wind energy production are
different depending on the hour and there are differences in penal-
ties for under and over estimation of production, an improvement
of 2% in the wind speed prediction implies a revenue in the final
wind energy price about 0.1% approximately. In Spain, for a stan-
dard 50 MW wind farm and a medium capacity of 26.5% this
implies an extra income of 6500 Euros/year.
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Fig. 8. Wind speed prediction obtained with the CRO–ELM algorithm and observed
wind speed; (a) prediction in time and (b) dispersion graph.

Table 3
Results obtained with the ELM and SVMr approaches as prediction algorithms, using
the features selected by the CRO–ELM and CRO–LR algorithms.

ELM SVMr

CRO–ELM 2.503 2.241
CRO–LR 2.679 2.436
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6. Conclusions

This paper proposes a new hybrid physical–statistical approach
for short-term wind speed prediction in wind farms. The proposed
algorithm is formed by a new bio-inspired approach (the Coral
Reefs Optimization algorithm, CRO), hybridized with a fast-train-
ing neural network (Extreme Learning Machine, ELM). One of the
contributions of the problem is that the wind speed prediction
problem has been stated in this work as a feature selection prob-
lem from the output of a meso-scale model, in such a way that
the objective of the system is to obtain the best possible subset
of features to be the input of a regressor (the ELM in this case),
in terms of an error of prediction.
The performance of the system has been tested in a real prob-
lem of wind speed prediction in a wind farm sited on the west
northern coast of the USA. The CRO–ELM approach has been tested
there against the performance of a hybrid Evolutionary Algorithm
with the ELM (EA–ELM) approach, in order to study what is the
contribution of the CRO to the complete algorithm, and also with
another hybrid approach formed by the CRO and a linear regressor
approach (CRO–LR), in order to evaluate the action of the ELM in
the algorithm. The results have shown that the CRO–ELM is the
best approach over all tested in this work, obtaining the less error
in wind speed prediction. Specifically, the average improvement
obtained with the CRO–ELM over the EA–ELM algorithm in terms
of mean square error is about 2%. The number of features that pro-
vided the best results in terms of error between the observed and
the predicted wind speed was 9. Experiments with different num-
ber of features showed a worse performance of all the tested algo-
rithms. A final analysis by using the features selected with the
CRO–ELM into a different regressor (Support Vector Regressor
algorithm in this case), has shown a better result than the ELM,
even though the step of feature selection was carried out with
the ELM. This indicates that feature selection process performed
with the CRO is robust, and the features selected are significant
in this paper of wind speed prediction.
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